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 The CNN model developed in this study demonstrated remarkable 
performance, achieving an outstanding validation accuracy of 99.96%. 
Through experimentation, it was found that employing the RMSprop 
optimizer with a learning rate of 0.001 yielded superior results compared to 
the Adam optimizer utilized in previous iterations. Additionally, increasing 
the number of epochs from 10 to 20 resulted in a significant enhancement in 
accuracy, highlighting the importance of iterative training for model 
refinement. Moreover, the implementation of Early Stopping proved to be a 
valuable technique, effectively conserving training time by halting the 
training process once optimal accuracy levels were reached. These findings 
underscore the efficacy of various optimization strategies in bolstering the 
performance of CNN models for rose leaf disease detection. The achieved 
accuracy rates signify a substantial advancement in disease detection 
technology, holding promise for enhancing agricultural productivity and 
ensuring plant quality. This research contributes valuable insights into the 
optimization of CNN parameters, paving the way for further advancements in 
automated disease detection systems in the field of agriculture. 
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1. INTRODUCTION  

The global production and export of roses have seen significant economic importance, with the 
export value surpassing 175 million USD in 2019, primarily led by top exporting countries such as the 
Netherlands, Denmark, Uganda, Germany, and Canada [1]. In Indonesia, according to the Central Bureau of 
Statistics, the production of rose cut stems increased by 169.106 million in 2022 [2]. Roses have long been 
cherished for their enchanting aroma and iconic symbolism of love and elegance, adorning gardens, floral 
arrangements, and special occasions worldwide. However, like any other plant, roses are susceptible to leaf 
diseases, which can jeopardize plant health and reduce flower quality. Rose leaf diseases have become a 
serious concern for farmers and rose producers worldwide[3]. Leaf diseases such as rose slugs, rust, and 
sawfly larvae pose significant threats to the health and productivity of rose plants  [4]. 

Manual diagnosis of rose leaf diseases requires significant skills and experience, while the process is 
also time-consuming and costly [1] Previous research has attempted to address this issue, but there is still 
room for further improvement. Thus, in this study, we propose a novel approach to enhance the efficiency 
and accuracy of diagnosing rose leaf diseases using state-of-the-art technology[5]. We believe that the 
proposed approach will provide significant innovative value in efforts to protect rose plants from disease 
outbreaks and improve the well-being of farmers and the overall sustainability of the floriculture sector. 
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In the previous research conducted Basak [4], an accuracy of 95.65% was achieved. This indicates 
that the approach used in that study yielded satisfactory results in diagnosing leaf diseases in rose plants. 
However, there is still room for further improvement in accuracy and efficiency of the diagnostic process. 
Therefore, this study aims to propose a new approach that can enhance diagnostic accuracy and address 
potential limitations of the previous approach. 

This research is limited to the utilization of rose leaf image data, encompassing several common 
categories of leaf diseases. The development of the model will focus on the detection and classification of 
rose leaf diseases based on digital images with a high level of accuracy. The aim of this study is to enhance 
the accuracy of rose leaf disease diagnosis through the optimization of convolutional neural network  models, 
taking into consideration factors such as activation functions, optimizers, and the number of epochs. 

 
2. RESEARCH METHOD  

The dataset utilized in this study was sourced from kaggle, a popular platform for accessing and 
sharing datasets. Kaggle provides a diverse range of datasets contributed by researchers and data enthusiasts 
worldwide. In this research, we accessed a dataset specifically curated for rose leaf images, containing 
various instances of leaf diseases commonly found in rose plants. The dataset from kaggle served as the 
primary source of image data for training and evaluating the convolutional neural network models developed 
in this study. The procedures have been carried out: 

 
Figure 1 Research Workflow Flowchart 

 
2.1.  Dataset 

The images of rose leaves were obtained from the Kaggle platform[6], which provides a dataset 
consisting of a total of 14,910 images. This dataset is divided into three main categories: Healthy Leaf Rose, 
Rose Rust, and Rose Sawfly/Rose Slug. Each category contains images representing the respective 
conditions with various variations[7]. The data collection process involved downloading the dataset from the 
Kaggle platform and directly storing it in Google Colab. 
 
2.2.  Modification the activation function 

After conducting preliminary analysis, we tested the use of Leaky ReLU activation function in both 
convolutional and dense layers of the CNN model [8]. However, following experimentation, we found that 
the implementation of Leaky ReLU did not yield a significant improvement in our model's accuracy. 
Consequently, we decided to revert to using the ReLU (Rectified Linear Unit) activation function, which was 
initially employed in the model [9]. 
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This decision was based on evaluation results indicating that the utilization of Leaky ReLU did not 
deliver the expected performance enhancement in our model. Despite Leaky ReLU being designed to address 
the issue of "dead neurons" that may occur with ReLU, in our case, the change did not result in significant 
improvement in feature representation or acceleration of convergence during the training process [10]. 

Thus, we opted to reinstate the ReLU activation function for both convolutional and dense layers in 
our model. This modification was implemented by reverting the activation parameter in these layers to 'relu' 
[11]. Subsequently, we recompiled the model using the same optimizer, namely Adam, and categorical 
crossentropy loss function as before. This decision was made based on the evaluation of experimental results, 
which indicated that the use of ReLU offered better performance within the context of our model. 
 
2.3.  Modification optimizer 

After changing the activation function, the next step we took was to switch the optimizer from 
Adam to RMSprop[12]. Additionally, we introduced additional settings, including setting the learning rate to 
0.001 for RMSprop[13], and implemented the early stopping method to improve model training[14]. Setting 
the learning rate to 0.001 was applied to adjust the learning rate in RMSprop, allowing the model to make 
finer weight adjustments during training. Furthermore, we incorporated the early stopping method to prevent 
overfitting and expedite convergence[15]. The early stopping method monitored the model's performance on 
validation data during training and halted training when the performance did not improve for a certain 
number of consecutive epochs[16].  
 
2.4.  Modification of the Number of Epochs 

As the final step in fine-tuning the CNN model, we decided to increase the number of epochs from 
10 to 20. This addition of epochs was made considering the monitoring results obtained through the early 
stopping technique. Early stopping was implemented to monitor the model's performance on the validation 
dataset. By adding epochs, we provided the model with more iterations to learn complex patterns from the 
training data[17]. However, we remained vigilant about the potential for overfitting by utilizing the early 
stopping mechanism to halt training if there was no significant improvement in validation loss. This change 
was expected to give our model more time to converge and improve the accuracy of rose leaf disease 
detection. The implementation of this modification reflects our efforts to adjust the model training process to 
achieve optimal results. 
 
3. RESULTS AND DISCUSSION  

Table 1. Experimental Results at Epoch 10 

 
In the development experiment of the Convolutional Neural Network (CNN) model for diagnosing 

rose leaf diseases, we conducted variations in key parameters such as activation function, optimizer, and 
learning rate, aiming to enhance the model's accuracy. In the first trial, we utilized the ReLU activation 
function and Adam optimizer, achieving an accuracy of 95.65%. The utilization of the Leaky ReLU 
activation function in the second trial boosted the accuracy to 97.25%. The third trial demonstrated that the 
combination of ReLU with RMSProp optimizer and a learning rate of 0.001 yielded very high accuracy, 
reaching 99.96%. However, in the fourth trial, despite retaining Leaky ReLU, employing the RMSProp 
optimizer resulted in slightly lower accuracy, namely 98.98%. These outcomes highlight the significance of 
selecting the optimal combination of model parameters to attain the desired performance. 

 
Table 2. Experimental Results at Epoch 20 

 
In this experiment, tests were conducted using a Convolutional Neural Network (CNN) model with 

variations in the number of epochs, types of activation functions (ReLU and Leaky ReLU), and the use of 
optimizers (Adam and RMSProp). In each test, the learning rate parameter was set to 0.001. The results of 
the experiment showed that in the model using ReLU activation function and Adam optimizer, training was 
stopped at Epoch 17 with an accuracy of 97.16%. Meanwhile, the same model using Leaky ReLU activation 

Epoch Activation Optimezer Learning Rate Early Stoping Accuracy 
10 ReLU Adam   95,65 
10 Leaky ReLU Adam   97,25 
10 ReLU RMSProp 0,001  99,96 
10 Leaky ReLU RMSProp 0,001  98,98 

Epoch Activation Optimezer Learning Rate Early Stoping Accuracy 
20 ReLU Adam 0,001 Epoch 17 97,16 
20 Leaky ReLU Adam 0,001  97,33 
20 ReLU RMSProp 0,001 Epoch 10 98,50 
20 Leaky ReLU RMSProp 0,001 Epoch 13 99,47 
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function achieved an accuracy of 97.33% without early stopping notification. Furthermore, in the model 
using RMSProp optimizer and ReLU activation function, training was stopped at Epoch 10 with an accuracy 
of 98.50%. On the other hand, in the same model using Leaky ReLU activation function, training was 
stopped at Epoch 13 with an accuracy reaching 99.47%. 

It is worth noting that early stopping was not applied in the second set of experiments to evaluate the 
effectiveness of early stopping in improving model convergence. 

 
3.1.  The best epoch results 

Figure 2 The best epoch results 
 

The training results of the Convolutional Neural Network (CNN) model on a dataset consisting of 3 
classes with a total of 7350 images showed significant improvement over 10 epochs. Initially, the model 
achieved around 61.52% accuracy in the first epoch. However, as the number of epochs increased, the 
model's performance improved consistently. By the end of training, the model achieved very high accuracy 
levels, reaching approximately 96.68% on the training data and 99.96% on the validation data. 

Throughout the training process, there was a consistent increase in accuracy and a significant 
decrease in loss value. This indicates that the model successfully learned complex patterns in the dataset and 
performed classification very well. The final results of this experiment demonstrate that the CNN model I 
developed is capable of producing highly accurate predictions for the classes in the given dataset. 
 
3.2.  Graphical Results 
 

(a) (b) 

 

Figure 3 Graphical Results 
 

Image (a) shows a chart with two lines representing different types of loss, presumably from a 
machine learning model training process. There are two lines on the chart, one is blue and labeled "Training 
Loss" and the other is orange and labeled "Validation Loss." The x-axis of the chart is labeled "Epochs," 
which generally refers to complete passes through a training dataset during the machine learning process. The 
scale of the x-axis runs from 0 to 8, suggesting that the data covers 9 epochs. The y-axis is labeled "Loss," 
which is a metric used to evaluate how well the model's predictions match the actual data. The scale on the y-
axis runs from 0 to 1, indicating that the loss values fall within this range. Both lines show fluctuations in loss 
value, with the training loss starting high at around 0.8 and decreasing to about 0.2 by the 8th epoch. The 
validation loss starts around 0.6, increases to about 0.7, has sharp declines and spikes around the 3rd and 4th 
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epoch, and ends up approximately at 0.4 by the 8th epoch. The behavior of these lines could indicate how 
well the model is learning from the data. Generally, the desired outcome is for both training and validation 
loss to decrease over time, and ideally, for the validation loss to be low and stable, indicating good 
generalization of the learned model to new data. The spikes and fluctuations seen in the validation loss curve 
suggest that the model may be experiencing some instability during training, such as overfitting to the 
training data or underfitting to the validation data at certain epochs. 

Image (b) is a line graph plotting "Accuracy" against "Epochs." The Accuracy is on the y-axis and 
ranges from 0.65 to 1.00, while Epochs are on the x-axis and range from 0 to 9 (perhaps representing training 
iterations in a machine learning context). There are two lines on the graph: one labeled "Training Accuracy" 
and the other "Validation Accuracy." The "Training Accuracy" line is in blue and generally trends upwards 
as the number of epochs increases, indicating an improvement in accuracy over time on the training dataset. 
The "Validation Accuracy" line is in orange, and it shows more variability. It increases, then drops at the 
third epoch, rises again, and falls slightly before the last epoch. This could suggest that while the model is 
learning, it may be experiencing some overfitting or instability in generalizing to new, unseen data. Overall, 
the graph is demonstrating a typical scenario in the training of machine learning models where the model's 
performance on training data improves while the performance on validation data may experience 
fluctuations.
 
3.3.  Confusion Matrix 

Figure 4 Confusion Matrix 
 

The experimental findings unveil the remarkable efficacy of the developed model, which achieved 
an exceptional accuracy rate of 99.967%. This outstanding performance underscores the model's adeptness in 
accurately discerning and categorizing different disease classes. Delving deeper into the assessment, the 
confusion matrix offers a detailed breakdown of the model's predictions. In the case of "Healthy_Leaf_Rose," 
the model accurately identified 2447 instances, while misclassifying 3 cases. Similarly, for "Rose_Rust," the 
model made precise predictions in all 2450 cases without any misclassifications. Moreover, in the category of 
"Rose_sawfly_Rose_slug," the model achieved perfect accuracy, correctly classifying all 2450 instances. 
Such meticulous evaluation through the confusion matrix provides invaluable insights into the model's 
performance, elucidating both correct classifications (true positives) and misclassifications (false positives 
and false negatives) across various disease classes. 
 
3.4.  Classification Report 

Figure 5 Classification Report 
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The model has very high precision, recall, and f1-score values for each class, indicating excellent 
performance. Accuracy also reached 1.00 which shows that the model performs predictions very well overall. 
 
4. CONCLUSION  

In conclusion, our study aimed to improve the accuracy of rose leaf disease detection through CNN 
model optimization and parameter adjustments. We expected enhanced model performance through various 
modifications including activation function tuning, optimizer selection, and adjusting the number of epochs. 
Experimental results revealed that utilizing ReLU activation function and RMSprop optimizer over 10 
epochs yielded the highest accuracy of 99.96%. Moving forward, there are prospects for further research to 
explore additional optimization techniques and real-world application of the optimized model for rose leaf 
disease detection. This study provides a foundation for future research in plant disease detection, with the 
potential to enhance agricultural practices and disease management. 
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